Investigación

Undefined

Researchers study the effect of global warming on Antarctic mosses

Researchers study the effect of global warming on Antarctic mosses

  • Through a Fondecyt Project led by Dr. Gustavo Zúñiga, a research team of Universidad de Santiago is carrying out measurements of the mosses at the Collins Glacier and the Ardley Peninsula, in order to analyze the impact of global warming on these populations and identify their tolerance mechanisms to resist environmental changes.

 



 

 

 

 

Dr. Gustavo Zúñiga, researcher at Universidad de Santiago; Marisol Pizarro, a graduate student of the Biotechnology PhD program of the Faculty of Chemistry and Biology, and  Gustavo Zúñiga-Líbano, an undergraduate student of the Biotechnology Engineering Program of the Faculty of Engineering, are now at the “Profesor Julio Escudero” base of the Chilean Antarctic Institute (INACH, in Spanish) studying the impact of global warming on Antarctic mosses in the context of the Fondecyt Project "Metabolomic responses of the Antarctic mosses Sanionia uncinata and Polytrichastrum alpinum to global warming".

While the researchers are in the Antarctica, they aim to establish a baseline with regards to the effect that global warming is having on the region and, particularly, to identify the environmental tolerance mechanisms of the Sanionia uncinata and Polytrichastrum alpinum mosses. In order to reach these goals, the study involves collecting samples and measuring the environmental variables in the Collins Glacier and the Ardley Peninsula.

“We must consider that the Antarctic Peninsula has been one of the areas most affected by global warming; in spite of this, there are no studies up to date regarding the response to this phenomenon at a molecular level and there are no studies that correlate the stress conditions that these species are enduring in the Antarctica, either,” Dr. Zúñiga explained. The study aims to describe the physiological and molecular changes caused by the increase in temperature, UVB radiation and the availability of water for these mosses.

The members of the Plant Physiology and Biotechnology Laboratory of the Department of Biology at the Faculty of Chemistry and Biology; Hans Köhler, a graduate student of the Biotechnology PhD program, and Dr. Rodrigo A. Contreras- who traveled in December to the Unión Glacier polar scientific station to work in the project by studying the lichens of the area– have also contributed to this study.

 


 

Study collects information regarding the impact of electromagnetic technologies on human health

Study collects information regarding the impact of electromagnetic technologies on human health

  • A research team of the Technological Faculty of Universidad de Santiago, led by Dr. Arturo Rodríguez, conducted a study on the perception of Chilean people with regards to the use of electromagnetic technologies and their effect on human health. According to the survey conducted, among 1,100 people in the Metropolitan Region, although 87.4 per cent think that these tools are harmful to health, 92 per cent would not stop using them.

 

Electromagnetic technologies (mobile phones, Wi-Fi devices, mobile phones antennas, among others) have reached almost all spheres of life. In spite of this, users do not know much about the electromagnetic radiation these devices emit and the risk that they pose, two factors that have been considered the cause of some health problems.

A multidisciplinary team of the New Technologies Research Group (GINT-USACH, in Spanish) led Dr. Arturo Rodríguez, professor at the Technological Faculty of Universidad de Santiago, conducted a study that collected the Chileans’ opinion about technologies and their effect on human health. The study was based on face-to-face surveys and included 1,100 people from different communes of the Metropolitan Region.

The poll conducted in the context of a Public Opinion Dicyt Project showed that Chilean people are highly dependent on electromagnetic technologies, although they are aware of the health risk that they may pose. 

According to the researchers, the conclusions reflect a society that prefers meeting its need for communication and interconnection over health care. For example, 87.4 per cent of the respondents perceive the use of electromagnetic technologies to be harmful to health; however, 62.9 per cent think that it is important to have access to them and they also use these technologies for work.

The researchers say that these results are similar to other practices that can be observed in many situations of daily life. For example, drinking alcohol and smoking cigarettes, which are associated to different diseases; however, people would not stop using them. 

The survey showed illustrative data regarding technological dependence. Almost 90 per cent of the respondents said that they use electromagnetic technologies for company, while 92 per cent said that they were not willing to stop using them, in spite of the negative effects they may have.

Regarding the usefulness of these technologies, 39.4 per cent say that they are not totally convinced of using them for commercial transactions; besides, they do not consider these technologies useful tools in case of emergency. 

According to Dr. Rodríguez, “this phenomenon is due to the high presence of technology in daily life and the lack of education regarding the usefulness of technological devices and the need for their use. Technologies which are only oriented to meet needs will lead us to a society that cannot tolerate frustration; doubtlessly, to an increasingly troubled society.”

Translated by Marcela Contreras 

Food supplement developed to prevent cancer

Food supplement developed to prevent cancer

  • “Broccoli’s myrosinase enzyme production and encapsulation for its use as a food supplement” That is the name of the Fondef project recently awarded to Alejandro Angulo, a graduate of Universidad de Santiago. In the VIU line (Valorización de la Investigación en la Universidad, in Spanish), the funds will allow to develop a capsule to prevent different cancers.

 

It is well known that eating vegetables provides many health benefits; even more: some of them have disease preventive properties. Like broccoli, for example, that according to different studies, can be a natural anticancer agent.

Based on this idea, Alejandro Angulo, Biotechnology Engineer graduated from Universidad de Santiago, submitted the project “Broccoli’s myrosinase enzyme production and encapsulation for its use as a food supplement” to the IV VIU Contest of Fondef (Fund for the Promotion of Scientific and Technological Development) and he was recently awarded the funds. The initiative has the purpose of developing a capsule to enhance the natural ability of the broccoli to prevent different cancers.

Alejandro Angulo, director of the project, explains that this vegetable is able to produce some antioxidant and anticancer compounds called isothiocyanates, like sulforphane, that is highly powerful. The precursor to this compound, the myrosinase enzyme, is found in broccoli. When you chew it, its tissue breaks down, the enzyme and the substrate react and sulforphane is naturally released. “If we have more optimal or high-activity enzymes, we could maximize the content of these anticancer compounds,” the researcher said.

For the above, he proposes to create a capsule containing purified enzyme that, when eaten with broccoli, increases the sulforphane content in the body, and therefore, its anticancer effect. However, the researcher warns that the product “would allow preventing cancer, but it would not be a treatment for cancer.”

The researcher says that the idea of developing this food supplement arose when he was looking for a topic for his dissertation work and contacted Dr. Andrea Mahn. She was working on a Fondecyt project that sought to transform broccoli into a functional food. “I focused on the broccoli enzyme that acts as a catalyst for the chemical reaction that releases the anticancer compound, and aspect that she was not studying. In my dissertation work I was trying to describe this enzyme to then purify it and leave it ready to be used in the product. It was then when we thought of developing a food supplement,” he remembers.

His idea was one of the 12 proposals submitted by Universidad de Santiago that won the last VIU Contest version, a historical record that ranks our University in the first place this year. The study will have the support of the Department of Technology Transfer (DGT, in Spanish) to move forward to the ultimate goal: to develop the product for market.

The project is at its first stage that includes a business plan and a work plan; then it will be evaluated to continue to the second stage: the project implementation. “In the long term, we expect to meet all the project stages and position the product as a recognized brand. The idea is to position the brand and sell our product,” the researcher concluded.

Translated by Marcela Contreras

International Scientific Journal dedicates special issue to researcher at Universidad de Santiago

International Scientific Journal dedicates special issue to researcher at Universidad de Santiago

  • The renowned Journal of Coordination Chemistry dedicated its issue 67 to Dr. Juan Costamagna, academic at the Faculty of Chemistry and Biology of Universidad de Santiago, for his contribution to the development of this journal since 2000, when he was invited to be part of the Editorial Board. The journal aims at disseminating the investigations of renowned researchers in the field of Chemistry of Coordination Compounds in countries like the United States, France, Argentina, South Africa, and Chile, among others. 

 


In recognition of his significant contributions to the development of the Journal of Coordination Chemistry and in the context of his retirement from the Editorial Board, the journal dedicated a special issue to Dr. Juan Costamagna, researcher at the Faculty of Chemistry and Biology of Universidad de Santiago.

The journal aims at disseminating the investigations of renowned researchers in the field of Chemistry of Coordination Compounds in countries like the United States, France, Argentina, Uruguay, South Africa, Spain, Italy, Mexico, and Chile.

Jim Atwood, who was in charge of issue 67 called “Special Issue: To honor Professor Juan Costamagna on the occasion of his retirement", highlighted in the opening pages professor Costamagna’s “valuable opinion” and his contribution over the years “with his expertise” to the development of this publication.

Atwood pointed out that Dr. Costamagna “has been a consummate collaborator and has brought his talent to the Editorial Board of this Journal; he has published over 100 papers in the field of Coordination Chemistry and has served 14 times as the Chilean delegate to the International Advisory Committee of the International Conference on Coordination Chemistry between 1974 and 2006. He was also an Advisor to the Nobel Prize of Chemistry from 1996 to 2000”. This is the background for this special issue available since December on http://www.tandfonline.com/toc/gcoo20/67/23-24.
 

Contribution to Science

The participation of Dr. Costamagna in the journal dates back to 2000, when he was appointed to the Editorial Board by the journal’s general editor.

Since then, Dr. Costamagna has contributed with countless academic evaluations and several plenary “Online Annual Meetings” of the Editorial Board. The journal has positioned itself as a model in the field of Chemistry of Coordination Compounds. “I think I have modestly contributed to this growth and development,” Dr. Costamagna said.

Regarding his plans in the editorial work, Dr. Costamagna said that he will continue working as emeritus editor for “Communications in Inorganic Synthesis”, an online journal sponsored by Universidad de Santiago.


Translated by Marcela Contreras

Researchers at Universidad de Santiago were part of the INACH scientific expedition to the Antarctica

Researchers at Universidad de Santiago were part of the INACH scientific expedition to the Antarctica

  • Academics at the Department of Physics, led by Dr. Raúl Cordero, were part of the scientific expedition made in November by the Chilean Antarctic Institute to Unión Glacier and they contributed with valuable measurements of the optical properties of snow.
     

Although researchers who belong to Dr. Cordero’s group were pioneers in the Unión Glacier area when they carried out several measurements in December 2012, the scientist points out that “the Joint Polar Research Station located at 79 degrees South latitude is a milestone in the Chilean polar research work that will facilitate research at the area and will allow to enhance the national scientific activity in deep Antarctica,” he said.

The Joint Polar Research Station, located at the Unión Glacier in the southern area of Ellsworth Mountains, at about 3,000 kilometers to the south of Punta Arenas and only at 1,000 km from the South Pole, received an important scientific expedition organized by the Chilean Antarctic Institute last November.

Dr. Raúl Cordero led the research team of the Department of Physics of Universidad de Santiago that was part of this expedition and that carried out valuable radiometric measurements in order to describe the optical properties of snow, particularly, its reflectance. The amount of energy reflected by the Antarctic surface is very important, because its variation has an impact on the balance of energy of the continent and, therefore, on the climate of the entire planet.

Dr. Cordero emphasizes that any variation in the current weather conditions in the Antarctica (for example, alterations caused by temperature changes) could spark off mechanisms able to accelerate the climate change; therefore, “eventual reductions in the radiation reflected by the Antarctica into space could contribute to global warming.” “This campaign will provide significant evidence for a better understanding of the Antarctic climatology and its role as a global climate agent,” he added.

The researcher also highlights other aspects of the scientific activity developed at the Unión Glacier. “In spite of the fact that Chile has been conducting research in the Antarctica for decades and has permanent bases on the Antarctic Peninsula, the scientific efforts in the Antarctic Circle (i.e., beyond 66 degrees South latitude) have been rather limited.”

Although researchers who belong to Dr. Cordero’s group were pioneers in the Unión Glacier area when they carried out several measurements in December 2012, the scientist points out that “the Joint Polar Research Station located at 79 degrees South latitude is a milestone in the Chilean polar research work that will facilitate research at the area and will allow to enhance the national scientific activity in deep Antarctica,” he concluded.

Translated by Marcela Contreras

More efficient packaging to preserve fruits for export

More efficient packaging to preserve fruits for export

  • Ethylene is a hormone able to accelerate the ripening and maturation of fruits. Through a Fondef project, Dr. Francisco Rodríguez, a researcher at the Center for the Development of Nanoscience and Nanotechnology (Cedenna, in Spanish) of Universidad de Santiago, seeks to reduce the effects caused by this gas in two particular types of fruit, avocados and kiwis, and to develop more efficient packaging for the export process.

 


The Packaging Laboratory (Laben, in Spanish) of Universidad de Santiago organized a seminar that was held on November 28th, at Plaza San Francisco Hotel, with the purpose of informing on the current state of a study that seeks to develop an ethylene adsorber for producing packaging for climacteric fruit, like kiwis or avocados.

The activity was attended by representatives of different companies and by Valeska González, project executive of the Fund for the Promotion of Scientific and Technological Development, (Fondef, in Spanish); Dr. María José Galotto, director of the Laben; and Dr. Óscar Bustos, Vice President of Research, Development and Innovation of Universidad de Santiago.

During his presentation, Dr. Francisco Rodríguez Mercado, director of the project, said that the level of ripeness that fruits reach while they are being transported to different countries “requires finding new strategies to allow us to control some processes that affect the quality of our products.”

Dr. Rodríguez explained that, in order to reduce the effects of ethylene, they are working on a new adsorber based on local minerals, zeolites and clay, specifically. The first results showed that if zeolites are modified by some metals, they have a better response at ethylene removal, overtaking clay by 5% in effectiveness.

At a next stage, the study will focus on developing a suitable film that will be tested in the plant and then, in the selected fruits.

International point of view

Dr. Ramón Catalá, representative of the Institute of Agricultural Chemistry and Food Technology of the High Council for Scientific Research (IATA-CSIC), in Spain, also took part in the seminar and spoke about innovation and main trends in food packaging.

According to Dr. Catalá, Universidad de Santiago is on the right track “because they (researchers at the University) are working on completely relevant issues. Besides, the researchers are excellent and they have a clear policy with regards to incorporating qualified people to strengthen research activities on active packaging,” he said.

Translated by Marcela Contreras

Researchers develop software program that recognizes seismic signals from Llaima Volcano

Researchers develop software program that recognizes seismic signals from Llaima Volcano

  • The motion patterns typical of volcanoes can be predicted with a high rate of effectiveness as of data sent from the slopes of the Llaima Volcano in La Araucanía Region. This has been possible thanks to the work by Dr. Max Chacón, professor at the Department of Informatics Engineering of Universidad de Santiago, who developed a software program for this purpose. “In Chile, it is essential to increase the knowledge on volcanoes. In this way, we will be able to face emergency situations like eruptions, and even predict them and make timely decisions,” Dr. Chacón said.

 


Due to its location on the Pacific Ring of Fire, the Chilean territory has the second largest volcanic chain in the world, with more than 2,000 volcanoes, many of them located in the southern part of the country. Although they are considered among the most active volcanoes in Latin America, only 43 of them are being monitored. The main concern about these geological structures is their potential for eruptions and their seismic activity is a key factor in prevention. 

Researchers of Universidad de Santiago, Universidad de La Frontera, and the Southern Andean Volcano Observatory, Ovdas by its acronym in Spanish, conducted the study “Pattern recognition applied to seismic signals from the Llaima Volcano: an analysis of the events’ features”, which is available in the Journal of Volcanology and Geothermal Research.

According to Dr. Max Chacón, professor at the Department of Informatics Engineering of Universidad de Santiago and one of the developers of the program, “Based on the machine learning approach, we developed a piece of software that identifies the type of the seismic signal as of data sent by sensors located on the slopes of the volcano,” with an 80% accuracy in the Llaima Volcano.

“Volcano seismic signals are not related to the earthquakes typical of tectonic plate collisions, as one could deduce from a first interpretation of these phenomena. These movements are specific to volcanoes and they are caused by their distinctive features, like their activity, magma movement, gas movement, stiffness of components, etc.

Previously, the research team had studied the Villarrica Volcano, detecting the existence of three characteristic seismic event patterns: the LP (Long Period) event, which is related to the pressure of gas and other fluids in the conduit; the Tremor, which is related to changes in gas and magma densities; and lastly, the VT (Volcano Tectonic) event, which is associated to the fracture of the solid parts of the volcano or the conduits.

The researchers used the program again in a study on the Llaima Volcano, but they also tried to identify the features of data sent by the sensors in the volcano. Among these data, the amplitude, frequency and phase of the signals, and the way in which they appear together in each seismic signal, were particularly considered.

“With this, we tried to give more information to volcanologists, so that they could identify the signals more easily, also analyzing the way in which these features appeared in seismic events,” Dr. Chacón, an expert in system models, said.

According to Dr. Chacón, one of the most interesting conclusions was the similarity of the results in the two volcanoes, what contradicts the current idea that each volcano has unique seismic movements. The researcher says that for now, the hypothesis is that the similarity is due to the proximity between the two volcanoes; however, this has not been proved.

For the above, there are two potential steps to follow in the context of this research. First, a comparative study on these volcanoes to measure the exact differences between them; and second, the improvement of the program with the purpose of detecting the correlations between these seismic signals at the moment of the eruption.

“In Chile, we live with many volcanoes, so it is essential to increase the knowledge about them. The more we know, the better we will be able to face emergency situations like eruptions, and even predict them and make timely decisions,” Dr. Chacón said.


Translated by Marcela Contreras

New silver-based antibacterial compounds developed by researchers at Universidad de Santiago

New silver-based antibacterial compounds developed by researchers at Universidad de Santiago

  • By means of a Regular Fondecyt Project, a research team at the Faculty of Chemistry and Biology led by Dr. Manuel Azócar is currently working on the optimization of compounds derived from silver, by adding them anti-inflammatory properties and higher thermal stability and durability for their future use as antibacterial agents.

 


Besides being a metal used in jewelry, silver has varied applications and properties. One of them is its high electrical conductivity. Another distinctive feature of this element is that its particles are used in creams to treat burns and warts; water purification systems; anti-microbial paints and anti-bacterial compounds.

Regarding this last application, Dr. Manuel Azócar, researcher at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, is developing new silver-based anti-bacterial agents with anti-inflammatory properties, by means of a Regular Fondecyt Project.

The main objective of this research is to understand and enhance the essential features of these compounds for their future use as broad-spectrum bactericidal agents, with more air and light stability.

“We are interested in optimizing these metallo pharmaceutical agents by adding them higher anti-inflammatory properties, higher thermal stability under light conditions and also in identifying the elements that may have toxic effects on cells,” the researcher said.

Besides, one of the most novel aspects of this study is that it seeks to optimize these compounds to use them in lower doses and give them more air and light stability, because silver is a sensitive metal and gets oxidized easily, getting darker in a short period of time.

At a first stage, the work team has been able to prepare several compounds that have made possible to understand the conditions that allow obtaining more stable and durable products. They have also been able to evaluate these compounds as anti-bacterial agents.

“As of 2015, we have planned to assess the cytotoxicity of these compounds, verify our hypotheses regarding the reduction of toxic effects and make a more detailed analysis of their structural features,” the researcher finally said.

Translated by Marcela Contreras

Researchers at Universidad de Santiago develop an application to help people with Parkinson’s disease

Researchers at Universidad de Santiago develop an application to help people with Parkinson’s disease

  • A research team led by Dr. Pedro Chaná designed an application for computers and mobile devices that helps people with Parkinson’s disease to follow an exercise routine and contact with their attending team of physicians.
  • The researchers of this study that relates Psychology to Information Science are part of the Information Technology Innovation Center for Social Applications and the Center for Movement Disorders. Dr. Pedro Chaná said that this tool “facilitates patients’ rehabilitation, contributing to improve their quality of life.”

 

According to international data, there are about 40 thousand people with Parkinson’s disease in Chile, while about 2% of the world population suffers from this neurodegenerative disorder that affects the central nervous system and movement and, therefore, people’s quality of life.

In this context, researchers at our University developed an innovative application for computers and mobile devices that helps patients with their exercise routines.

By relating Information Science to Psychology, specialists of the Information Technology Innovation Center for Social Applications (Citiaps, in Spanish) and the Center for Movement Disorders (Cetram, in Spanish), both of Universidad de Santiago de Chile, designed the Rehabilitation Exercise Virtual Assistant (AVER, in Spanish).

This tool allows people with Parkinson’s disease to follow an exercise routine according to a calendar and to receive instructions from their doctors in their cell phones. At the same time, doctors will be able to monitor their patients’ progress and to communicate with them through texts, images and videos from their computers.

The principal investigator of the project and director of Cetram, Dr. Pedro Chaná, said that the application “facilitates patients’ rehabilitation, complements their workout routines and contributes to improve their quality of life.”

Dr. Chaná also said the AVER has already been implemented as a pilot project and is being evaluated in order to adapt the technology to users. “What follows is the field test, the last pertinent corrections and the implementation,” he added.

Besides, Dr. Chaná valued the work done together with young researchers of Cetram and Citiaps, “with whom we made up a multidisciplinary team and developed a different and very positive work culture.”

Contribution to patients’ quality of life

The Rehabilitation Exercise Virtual Assistant has been developed by a team mostly made up of young researchers. One of them, Álvaro Fernández (Citiaps), a post-doctoral researcher, shows himself “very pleased” with the work that they have done. Dr. Elena Herrera (Citiaps) shares his opinion, highlighting the contribution “to patients’ autonomy and quality of life” made by the application that they developed.

“Frequently, patients are not able to go to the physiotherapist on a regular basis or cannot afford it. This innovation will be of great help to them. Besides, it is a significant contribution to their autonomy, as they will be able to work out without needing to travel long distances or to interrupt their daily routines,” Dr. Herrera added.

The AVER tool developed at Universidad de Santiago is expected to undergo the last improvements to finally be implemented for the benefit of patients, the world of medicine and society in general.


Translated by Marcela Contreras

Solutions for optimizing wine making industry processes

Solutions for optimizing wine making industry processes

  • One of the most difficult procedures in the wine making industry around the world is cleaning and removing the remaining marc from the traditional fermentation vats. Through a project funded by Corfo’s Innova Chile, Dr. Lucio Cañete, together with professors Andrés Pérez de Arce and Héctor Barrera, of the Technological Faculty, are working on the design of devices to make this task easier, providing a solution both safe for workers and economical for the industry.


 
Andrés Pérez de Arce and Héctor Barrera, together with Dr. Lucio Cañete, the three of them professors at the Technological Faculty, are analyzing the technological viability of a device to solve one of the most complex problems for the wine industry: the cleaning of the traditional vats where the must is fermented.

Up to now, the fermentation process occurs in huge steel tanks that are filled up with crushed grape juice that stays there for a week or two, until the must is removed.

As the marc - the solid residue of seeds, skins, stalks and other impurities- remains in the tank, getting it clean before using it again is a problem for the industry, because it means that a worker has to go inside the vat through a lateral hatch, what puts his health at risk because of the toxic gas build-up in this dark and damp environment.

This is one of the most required works by the wine industry but with the least supply of workers due to the hostile work conditions; that is why companies usually offer additional bonuses to attract workers, but this is still not enough.

World problem

For this reason, Professors Lucio Cañete and Héctor Herrera, of the Department of Industrial Technologies, together with Professor Andrés Pérez de Arce, of the Department of Agrarian Management of the Technological Faculty, were awarded funds through Corfo’s InnovaChile for the project Extractor de Residuos Cohesivos Desde Medianas y Grandes Cubas Viníferas, code 13IDL1-25426 (Cohesive Residues Extractor for Medium and Large-sized Wine Making Tanks), in order to develop a device to solve this problem.

“The problem affects wine making not only at a domestic level, but worldwide,” Professor Cañete explained. Although some wine producers have vats than can be turned upside down to facilitate the removal of the marc, they are very expensive, so most companies use the traditional steel or concrete tanks.

After studying different possibilities, Professors Cañete, Barrera and Pérez de Arce decided to design a device to vacuum the marc without destroying it (as it is sometimes pressed again) and without needing a worker to enter the vat.

In a few days, the researchers should deliver the first progress report. They received the funding last April and it considers the creation of a test prototype; however, the researchers have already tested their proposal in wine producing companies.

A few weeks ago, they presented the idea in the conference of the Asociación Nacional de Ingenieros Agrónomos Enólogos de Chile (National Association of Oenologist- Agronomical Engineers of Chile), held in Molina. “We had a good response, because it is a real problem for the wine industry. Our solution seeks to reduce the workers’ health risk and to optimize the available time of the vats to make the most of the harvest time,” Professor Pérez de Arce said.

Today, the project is at an initial stage of development, testing the hypothesis to model the equipment and further creation of the prototype. The most advanced methods in this process are leading to ripper-vacuum cleaner-like and Archimedes’ screw-like solutions. In both cases, the device will be introduced in the tank through the hatch, but the worker would have the possibility of controlling it from the outside.


Translated by Marcela Contreras
 

Pages

Subscribe to RSS - Investigación