Investigación

Undefined

Inorganic molecules could help in anticancer treatments

Inorganic molecules could help in anticancer treatments

  • Through a Fondecyt Initiation into Research Project, Dr. Luis Lemus, professor at the Faculty of Chemistry and Biology, has studied the interaction between new molecules called “helicates” and DNA, in order to evaluate the development of more specific drugs to fight cancer, avoiding the destructive effects of chemotherapy and radiotherapy.

According to Globocan, a worldwide survey on cancer conducted in 2012; there are 14.1 million new cases of this disease. At present, the most widely used treatments are chemotherapy and radiotherapy. Their purpose is to stop cancer spreading in the body by killing malignant cells that divide rapidly, one of the main properties of most cancer cells; however, in the process healthy cells are killed too: hair follicles, gastric mucosal cells, blood cells, etc. These side effects make these non-specific treatments very destructive:

Something that could help to change this situation is the development of new compounds with a higher selectivity towards a specific biological target, the line of research of Dr. Luis Lemus, professor at the Faculty of Chemistry and Biology of Universidad de Santiago, who leads the Fondecyt* Initiation into Research Project named “Study on Helicates as DNA coordinators”. Its results could lead to developing more specific anticancer drugs.

“These molecules (helicates) are able to bind to DNA strands by means of specific and strong interactions, modifying its structure, what prevents the genetic material from replicating inside the cell. What should be noticed is that cancer cells are the ones that produce the largest amount of DNA; therefore, these molecules could be a potential treatment against cancer progression,” professor Lemus stresses.

To make progress in the treatment of this disease, first it is essential to deepen the knowledge about these compounds, which started to be studied less than 30 years ago. According to professor Lemus, nowadays there are a few groups in the world dedicated to study the use of helicates as anticancer drugs and the way in which this type of interaction affects the DNA structural modification has not been studied yet. This is the line of research that Dr. Lemus intends to develop.

“Helicates are inorganic chiral molecules with a helical shape similar to the one of DNA, in which each molecule has a helical twist sense defined according to its structure. These positive molecules interact with negatives ones, in this case, DNA. After this electrostatic attraction occurs, the DNA is able to recognize and selectively establish secondary interactions with helicates with better twist sense than others. Here, documenting this phenomenon is essential.

This project will be implemented in two stages. First, by performing the structural study and synthesis of different types of helicates with different transition metals; and second, by doing DNA tests to evaluate the affinity between the molecules and DNA, and the extent to which helicates could modify the latter.

Regarding the projections of the study, professor Lemus says that in the future, “it would be ideal to evaluate these compounds against cancer cells and therefore, to prove if they are able to kill these cells. However, today we are trying to build a very basic knowledge, because it does not exist. Acquiring this knowledge will be very helpful for us and for other groups.”

A field to explore

Creating a research group dedicated to study inorganic complexes for biological applications is among the goals that Dr. Lemus has for this project. According to the academic, this area is little developed in Chile, so this study could start a new line of research both at the University and in the country.

“We have the facilities, equipment and experience in synthesis to meet the initial goals of this project; but we also need help from other researchers who could contribute with their knowledge in biology to make the study more valuable. This project is the first step for the expectations that we have as a group,” Dr. Lemus says.

*Fondecyt: National Fund for Scientific and Technological Development.

Translated by Marcela Contreras

IV International Congress of Science, Technologies and Cultures: Call for symposium presentation proposals

IV International Congress of Science, Technologies and Cultures: Call for symposium presentation proposals

  • As in previous occasions, in this fourth version, Universidad de Santiago proposes to hold a great academic gathering to share works and foster an interdisciplinary dialogue.

The next International Congress of Science, Technologies and Cultures will be held at Universidad de Santiago between October 9th and 12th, 2015. Our University has decided to continue with this important initiative, focusing on three objectives: contributing to dialogue and exchange between different disciplines; encouraging the debate on intellectual work looking towards the future of Latin America and the world; and generating a big coordination movement involving people and institutions that produce and spread knowledge to develop intellectual productive clusters.

The congress will be held as a product of preexisting intellectual networks, with the purpose of strengthening and widening them, ensuring the projection of a civil intellectual society that shall rise as a voice in contemporary debates.

The organizing committee invites you to present symposium proposals for this important activity. The deadline for the reception of proposals is June 30, 2014, and they shall be sent to grancongreso2015@gmail.com.

For further information regarding registrations, proposals and activities, check http://www.internacionaldelconocimiento.org/documentos/2015/convocatoria-IV-congreso-ingles.pdf

Food protective film is developed using local byproducts

Food protective film is developed using local byproducts

  • Universidad de Santiago’s interdisciplinary research team, led by Dr. Silvia Matiacevich from the Technological Faculty, is focused on developing an edible film that could increase the shelf life of fresh foods by 30%.

Improving the way of preserving foods has been a permanent concern in food industry. This is the reason why packaging is essential for the quality and shelf life of the product. But this packaging should be in harmony with the environment.

In light of this situation, a sustainable alternative for food packaging has been developed: food covering edible films, which are being widely used and have become a world trend nowadays. At Universidad de Santiago, an interdisciplinary research team is trying to replicate this development, giving value added to different national byproducts.

This initiative will be viable thanks to the Associative Dicyt Project called “Bioactive Coatings for Foods”, which gathers together experts from different faculties of the University.

“We will use food industry byproducts which are considered as dispensable or waste material. We are going to give them a value added by adding antioxidant and antimicrobial components to them in order to increase the shelf life of fresh food products,” Dr. Daniel López says.

Academics from three different faculties gathered for this purpose: Dr. Rubén Bustos, from the Faculty of Engineering (Department of Chemical Engineering); Dr. Diego Venegas and Dr. Marlén Gutiérrez, from the Faculty of Chemistry and Biology (Department of Materials Chemistry); and Dr. Daniel López and Dr. Silvia Matiacevich, from the Technological Faculty (Department of Food Science and Technology), being Dr. Matiacevich the leader of the project.

During the two years scheduled for the project, the researchers plan to study the synergistic effect of this combination of products and they expect to increase food shelf life by over 30%.

Interdisciplinarity

Most of the academics related to this project are part of a larger group created by the end of 2013 called Indi, Asociación de Investigadores por el Desarrollo e Interdisciplinariedad of Universidad de Santiago de Chile, a group of researchers that promotes development and interdisciplinarity at the university.

“All of us have participated in some of these initiatives at some point, seeking for this interdisciplinarity. This is how we have met other people and created contacts. What is good is that more than just admiring the work of others, we have the real possibility of conducting studies together. For this reason, we value this type of projects, as they promote the integration and interdisciplinarity that define a university,” Dr. Matiacevich says.

Translated by Marcela Contreras
 

Universidad de Santiago’s researchers selected by Corfo to get trained in Silicon Valley

Universidad de Santiago’s researchers selected by Corfo to get trained in Silicon Valley

  • Patricio Flores, PhD in Biotechnology, and Yu-Wen Tang, student at the Master´s program in Technology Management- Major in Biotechnology, both from the Faculty of Chemistry and Biology, were awarded a grant to develop a strategy for marketing an enzyme that has multiple benefits for diagnosing diseases.

As a result of the work they did for a doctoral dissertation and after being granted funds through the “Go To Market, de la Idea al Mercado” Contest organized by Corfo (the Chilean Economic Development Agency), the researchers will get trained in Silicon Valley, in the context of the third stage of the project “Developing a strategy for marketing a highly stable glutamate dehydrogenase (GLDH) enzyme.”

The project, which was developed under the guidance of Dr. Jenny Blamey, associate professor at Universidad de Santiago, proposes replacing the bovine GLDH enzyme with one from an Antarctic extremophilic microorganism (capable of resisting extreme conditions of temperature, pH, pressure, salinity, among others), which does not have the deficiencies of its predecessor. Its most common application is in the area of clinical laboratories where it is used for diagnosing hepatic and renal diseases

According to researcher Patricio Flores, “having discovered this new enzyme, glutamate dehydrogenase (GLDH), improves the half-life of five different types of diagnostic kits, as its thermal stability is higher than the one of the enzyme used today.” The academic stresses that “what is most important is that it also solves the problem of low half-life of the “old” diagnostic kits, preventing from discarding expired kits that have not been used, improving result reliability, lowering costs, reducing losses for companies and enabling a stock available to give a quick answer to market requirements.”

“The new enzyme is much more stable. It can be stored at room temperature, keeping more than 85% of its activity for 50 days. On the other hand, the bovine enzyme completely loses its activity under the same conditions,” Dr. Flores explains, regarding the results of this project that involves Universidad de Santiago and Fundación Científica y Cultural Biocencia.

Go To Market

“Go To Market, de la Idea al Mercado” is an initiative that seeks to identify research studies conducted at universities, technological centers and Chilean companies that have generated technologies that could potentially benefit the global market.

“The application process for the Corfo’s Go to Market Contest coincided with the last steps to finish my doctoral dissertation in which I developed the product prototype, that is to say, the GLDH enzyme from an Antarctic thermophilic microorganism,” Dr, Flores says.

At present, the project is at its third stage, which involves getting training at the Standford Research Institute (SRI), scheduling meetings with investors and interested clients and developing a marketing strategy to position the product in the market. These will be the activities that the two researchers will have while they stay in USA.

Translated by Marcela Contreras

Fondecyt 2014 Contest: Universidad de Santiago was granted more than 3,600 million Chilean pesos

Fondecyt 2014 Contest: Universidad de Santiago was granted more than 3,600 million Chilean pesos

  • Universidad de Santiago was among the four national universities that will receive more funds from the National Fund for the Scientific and Technological Development (Fondecyt, its acronym in Spanish), according to the results of the 2014 Contest. Universidad de Chile, Universidad Católica and Universidad de Concepción were the other three universities.
In this new version of the Fondecyt national contest, our University had 33 projects approved that involve 3,616,000,798 Chilean pesos. This is 44,6% of the projects that applied for the funds. 
 
Some of the researchers who will receive the funds are Alexis Aspee, María Ureta, Manuel Azócar, Marcos Caroli and Gustavo Zúñiga, from the Faculty of Chemistry and Biology; Juan Retamal, Juliano Casagrande and Luis Hamm, from  the Faculty of Science; César Ross and José Santos, from the Institute for Advanced Studies; Ana María Fernández, Julio Pinto, Mario Garcés and Juan Muñoz, from the Faculty of Humanities, and Pedro Jara, from the Faculty of Administration and Economics, among others. See the complete list of researchers at the Fondecyt website.
 
According to the contest modality, it was informed that the communication letters containing the results will be sent to the applicants as of the beginning of March, as per the regular notification process. Until March the 06th, the sponsors of projects that have been approved who are in disagreement with the budgets allocated will be able to submitt  reassessment requests.
 
The financing agreements for the projects that won the contest will be signed once the proceedings before the Office of the National Comptroller General are finished. The deadline is June 30th, 2014.
 
The starting date for the first year of the projects is between March 15th, 2014 and March 15th, 2015.

Researcher of Faculty of Chemistry and Biology joints editorial board of renowned scientific journal

Researcher of Faculty of Chemistry and Biology joints editorial board of renowned scientific journal

  • In recognition of his extensive career in the area of electrochemistry, Dr. José Zagal, professor at the Department of Chemistry of Materials, was invited to be part of the editorial board of Electrochemistry Communications, an international journal with the higher impact index in its field.

Dr. José Zagal, professor at the Department of Chemistry of Materials of our university, was selected to be part of the editorial board of Electrochemistry Communications, the renowned scientific journal partnered with Elsevier that has the higher impact index in the field of electrochemistry.

In a conversation with UdeSantiago al Día, the academic said that he understood his inclusion in the board as “recognition of my work over many years; but most important, the recognition of a work that has mainly been done by a team.”

Professor Zagal has a vast experience in the scientific research field, particularly in the study of oxygen and reactivity. He started to work at Universidad de Santiago 40 years ago and he has kept on publishing specialized articles in his field of interest since then.

Besides, he has been part of editorial boards of different scientific journals, like the International Journal of Electrochemistry of Hindawi Publishing Corporation, since 2011 and the International Journal of Biotechnology & Biochemistry (IJBB), since 2012.

Zagal said that it is very important that both students and academics produce publications in their fields and get involved in different creative processes “to contribute not only to this University’s development but to all the country.”

“I think that it is necessary that students in any program should take part in creative and practical processes, that is to say, they should get involved in laboratory work since their first years at the university, so that they produce new knowledge that can reach most of the people through renowned publications,” he said.

“Publishing research results is essential. When you make public the work you do, your work becomes recognized in that field and, at the same time, you spread new knowledge,” he added.

For this reason, professor Zagal expects that his role at the Electrochemistry Communications’ editorial board means a contribution to the promotion of sciences and to the better positioning of Universidad de Santiago de Chile.

“You stay at this university because you love it and not for the money. Many researchers here might well be working at private sector companies, but they stay here because they feel a real bond with this institution,” he said.

“For the love that I have for this University, I expect that my inclusion in the editorial board will benefit the institution and will contribute to spread knowledge among society,” Dr. Zagal concluded.

Translated by Marcela Contreras

New applied research center will integrate information technology, psychology and neuroscience

New applied research center will integrate information technology, psychology and neuroscience

  • The implementation of this new research instance was announced by the University’s President, Juan Manuel Zolezzi, on December 3rd, during the launching of a Program for Institutional Improvement (PMI, in Spanish), funded by the Ministry of Education. The purpose of this new Information Technology Innovation Center for Social Applications (Citiaps, in Spanish) is to be an intermediary between research and its viability as software products that could be commercially developed, based on the premise of integrating innovation and science.

The PMI was created by this Corporation as a strategy to achieve world-class excellence in an innovative way, integrating three research areas to develop science- based innovation: Information technology, psychology and neuroscience. The University was awarded a grant from the Ministry of Education’s contestable fund to finance the program through a performance agreement.

“With this project we intend to improve our international competitiveness, increase the University’s scientific productivity in a significant way, and reach higher levels of teaching and scientific discoveries. All this will be done through the highly specialized and interdisciplinary research centers that we already have and through others that we are committed to create,” said President Zolezzi.

In the program’s launching ceremony, held on December 3rd in the University’s Salón de Honor, the University’s President said that the PMI will outline the future of applied research and that a significant share of this goal will lie on this new Information Technology Innovation Center for Social Applications.

Applied innovation for society

“The Citiaps will integrate the work done until now and it also considers the technological origins of this University and the great development of social sciences during the last years,” President Zolezzi said, emphasizing at the same time the center’s efforts to develop strategic partnerships among researchers, entrepreneurs and companies, doing a state-of-the-art interdisciplinary work.

“The PMI will strengthen the Vice Presidency of Investigation, Development and Innovation (Vridei, in Spanish) and to consolidate a technology transfer platform to do research in association with companies and to transfer and commercialize the R+D results,” the President added.

Oscar Bustos, Vice President of Investigation, Development and Innovation said that, although the Citiaps will be focused on three main areas (Information technology, psychology and neuroscience), its goal will be to cover all disciplines. “We want our students- who are very creative- to channel their ideas through the center, so that researchers develop these ideas and create products which are useful to society.”

“The idea is to generate innovation based on high-impact science. We have set ambitious but real goals,” the Vice President said.

Contributing to the country

Alberto Vásquez, Head of the Ministry of Education’s Higher Education Division, referred to the excellent assessment that the PMI had during the contest, which meant being granted the funds, and to the significance of contributing with new knowledge for Chile. “We would like to congratulate and support this initiative and say that for our country is good, important and relevant to award this performance agreement to Universidad de Santiago.”

John Fraser, American expert and professor at the Florida State University, who was a special guest at the ceremony, valued this interdisciplinary initiative from an international point of view saying that this was the best moment to invest in knowledge and to promote creativity, considering the economic success of the country.

Finally, Luis Magne, Head of the Vridei’s Technological Management Department awarded the winners of the First Patent Contest for Students: Roberto Santiago, from the Department of Chemical Engineering; Jaime Lagos and Álvaro Espejo, from the Department of Physics; Camila Manfredi, from the School of Architecture, and Loreto Acevedo, from the Department of Food Science and Technology.

Fernando Vial, Head of the Ministry of Education’s Institutional Financing Department; Mauricio Marín, PMI and Citiaps’ Scientific Director; Pablo Vera, Citiaps’ Deputy Scientific Director; Ramón Blasco, Dean of the Faculty of Engineering; Rafael Labarca, Dean of the Faculty of Science, Augusto Samaniego, Dean of the Faculty of Humanities, and other authorities, also attended the ceremony.

Translated by Marcela Contreras

Research will study flotation process to recover copper

Research will study flotation process to recover copper

  • The research, led by Dr. Miguel Maldonado, professor at the Metallurgical Engineering Department, intends to optimize this process through new on-line air measurement equipment.

During the last couple of years, we have heard about a decline in copper production, and according to experts this is one of the reasons why the quality of the mineral has been reduced. One way to revert this situation is improving mining procedures, which is a priority for mining industry.

One of these processes is flotation, a method used to separate valuable minerals like copper from others. The process starts once the rock is ground and mixed with water to form a pulp. Some reagents that modify the mineral surface are added to this mixture. In this way, when bubbles of air are forced up through the pulp, they collide with particles and the ones containing copper, for example, go up to the surface making a froth rich in valuable mineral, ready to be removed.

This is the method studied by Dr. Miguel Maldonado, professor at the Metallurgical Engineering Department. “Although today improvements have been made to flotation process- by means of devices that measure the air flow forced into a flotation equipment or the use of cameras that continuously monitor de physical properties of the froth- we still do not have a full knowledge of how air dispersion in the bubbles affects the metallurgical performance of the process,” the researcher said.

This encouraged the academic to do a research project called “Estimating on-line air concentration in flotation systems,” funded by the Scientific and Technological Research Department (Dicyt) of Universidad de Santiago.

“We believe that this variable is important when determining the process performance, as it is related to the surface area available to collect the particles containing valuable mineral and, therefore, to the complete recovery of copper,” the researcher explained.

The researcher said that the project was born while he was doing his postdoctoral research in Canada, at McGill University, considered a pioneer institution in proposing ways of measuring this variable. At that time, while he was studying this technique, he found out a problem with the interpretation of Maxwell’s equation, which would lead to a measurement error.

For this reason, the academic decided to insist on seeking new techniques in order to solve the problem; this time, with a better knowledge of the system.

At the first stage of the research, essential aspects of the error made will be studied. For this purpose, experiments to get a better understanding of the Maxwell’s equation will be performed. McGill University will also take part in this research by sending a flotation column to support the study and by developing papers together about this topic.

At the second stage, new techniques will be explored to find a method that estimates the air concentration in real time, in order to control and optimize the process.

In the academic’s opinion, “the efficient recovery of valuable minerals like copper is very important, and this measurement method could provide significant information for optimizing the process. This will have all kinds of benefits, such as reducing the reagents added or reducing the water used. This fact is also important if we consider that in most mining operations the water resource is scarce.”

 

Translated by Marcela Contreras

Academic studies brain development process in human embryos

Academic studies brain development process in human embryos

Providing basic knowledge about human cerebral cortex development at embryonic and early fetal stage is the goal of the research project led by Dr. Lorena Sulz, which will be conducted during the next three years.

According to reports, some psychiatric disorders, such as schizophrenia and bipolar disorder, begin during embryonic development. Most of the studies on this topic have been conducted on animal samples, due to ethical restraints and limited access to human embryos. This is the reason why the field of human embryology related to neurology is an area which has not been thoroughly explored.

In this context, Dr. Lorena Sulz, academic of Universidad de Santiago’s School of Medicine, will carry out the study “Role of nitric oxide in human cerebral cortex morphogenesis”, which intends to gather critical information about the mechanisms involved in the development of nerve cells during the first weeks of pregnancy.

The study will be conducted during the next three years and is funded by the Scientific and Technological Research Department (Dicyt) of Universidad de Santiago. It is a unique study as it is the first time that this branch of embryology involves human samples, which were obtained from de Institution’s Embryo-Fetology collection.

The idea is to gather basic knowledge about this topic in order to explain if the presence of nitric oxide is also essential for producing new nerve cells in human cortex, as it has already been proved in animal samples and in neuronal regeneration processes, both in human beings and mice. “We want to know if this molecule is expressed in the cerebral cortex being developed and identify in what areas and at what stages it is present. In this way, we can infer approximately the process in which it is involved,” the academic explains.

The study will be carried out in two stages. The first one will completely focus on the morphological analysis of cells and embryos being used. This stage, which is under execution at this moment, will allow describing the human cerebral cortex development process. After identifying each phase, the second stage will allow identifying cells that produce nitric oxide and the process in which it would be involved.

The study will be conducted at the Embryology Unit of the Faculty of Medical Sciences, Universidad de Santiago, led by Dr. Jaime Pereda, the project`s co-investigator, M.S. Carlos Godoy and Dr. Sulz. The three professionals, experts in their areas of research interest, complement each other’s work in a way that has helped to a good execution of their projects. “In general, the three of us work together because we use very similar techniques: only the molecule and the body organ of interest are different. We have adjusted to each other very well,” Dr. Sulz adds.

However, the expectations are long-term. The research seeks to establish some theoretical basis for human cerebral cortex development, in order to develop new studies on this topic. The results will be presented in different papers in specialized publications and in different congresses and conferences.

Finally, Dr. Lorena Sulz expects that during the research, they will be able to prove that nitric oxide takes part in human cerebral cortex development, just like it does in laboratory animals. “As it is basic science, it only provides a knowledge base. But if nitric oxide is known to be significant in cerebral cortex development, further care should be taken so as not to interrupt this process during the critical period, preventing potential malformations. This additional knowledge could be a contribution to prenatal care,” the researcher concludes.

Translated by Marcela Contreras

Scientist at the Aquaculture Biotechnology Center discovers new information on mortality caused by the ISA virus

Scientist at the Aquaculture Biotechnology Center discovers new information on mortality caused by the ISA virus

  • A study by Dr. Mario Tello, researcher at this center, establishes a previously unknown relationship between an infectious salmon anemia (ISA) genome segment and its virulence.

The study by this researcher at the Aquaculture Biotechnology Center and the Faculty of Chemistry and Biology, University of Santiago de Chile, could provide important insights about how to predict salmon mortality by the ISA virus, a disease that affects Chilean aquaculture since 2007.

The research "Analysis of the use of codon pairs in the HE gene of the ISA virus shows a correlation between HPR bias in codon pair use and mortality rates caused by the virus" was published in the June issue of the Virology Journal, a specialized international publication.

The journal provides details of the investigation conducted by the University Of Santiago de Chile’s scientist who was able to identify the role and the relationship of a segment of the ISA virus by using bioinformatics tools and the existing literature.

According to Dr.Tello, the results of this study are one of the first hypotheses to explain why a highly variable region of the virus, called HPR (High Polymorphism Region), would be associated with the observed virulence.

 "Our results suggest that there is a region of the virus affecting its transmission and its ability to cause the disease. “That is to say, our analyzes suggest that there is a direct relationship between the mortality caused by the virus and the efficiency of its translation", Dr. Tello says.

According to the researcher, "the strain of the virus found in Chile would be one of the most efficient in the translation, and this would be directly related to an increasing mortality," and explain one of the possible reasons for the high mortality reported in our country.

Although the in vitro results have not been confirmed yet, the research is already an important step in deciphering the ISA virus characteristics, and it could provide solutions to the salmon industry. "Perfectly, these solutions could aim at generating a virulence predictor based on the analysis of the HPR region, a predictor in which we are working," the scientist says.

Pages

Subscribe to RSS - Investigación